
Cray Scientific Libraries  
 

Overview 



What are libraries for? 

● Building blocks for writing scientific applications 

● Historically – allowed the first forms of code re-use 

● Later – became ways of running optimized code 

● Today the complexity of the hardware is very high 

● The Cray PE insulates users from this complexity 
• Cray module environment 

• CCE 

• Performance tools 

• Tuned MPI libraries (+PGAS) 

• Optimized Scientific libraries 

 

Cray Scientific Libraries are designed to provide the 
maximum possible performance from Cray systems with 
minimum effort. 
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Scientific libraries on XC – functional view 



What makes Cray libraries special 

1. Node performance 
● Highly tuned routines at the low-level (ex. BLAS) 

2. Network performance 
● Optimized for network performance 

● Overlap between communication and computation 

● Use the best available low-level mechanism 

● Use adaptive parallel algorithms 

3. Highly adaptive software 
● Use auto-tuning and adaptation to give the user the known best (or 

very good) codes at runtime 

4. Productivity features 
● Simple interfaces into complex software 

 



LibSci usage 

● LibSci  
● The drivers should do it all for you – no need to explicitly link 

● For threads, set OMP_NUM_THREADS 
● Threading is used within LibSci 

● If you call within a parallel region, single thread used 

● FFTW 
● module load fftw (there are also wisdom files available) 

● PETSc 
● module load petsc (or module load petsc-complex) 

● Use as you would your normal PETSc build 

● Trilinos 
● module load trilinos 

● Cray Adaptive Sparse Kernels (CASK)  
● You get optimizations for free 



● module command   
(module --help) 

 

● PrgEnv modules:  

 

● Component modules 

 

● csmlversion (tool) 

 

● Cray driver scripts ftn, cc, CC 

Your friends 
TUNER/STUNER> module avail PrgEnv 

 

PrgEnv-cray/3.1.35               PrgEnv-gnu/4.0.12A               PrgEnv-

pathscale/3.1.37G 

PrgEnv-cray/3.1.37AA             PrgEnv-gnu/4.0.26A               PrgEnv-

pathscale/3.1.49A 

PrgEnv-cray/3.1.37C              PrgEnv-gnu/4.0.36(default)       PrgEnv-

pathscale/3.1.61 

PrgEnv-cray/3.1.37E              PrgEnv-intel/3.1.35              PrgEnv-

pathscale/4.0.12A 

PrgEnv-cray/3.1.37G              PrgEnv-intel/3.1.37AA            PrgEnv-

pathscale/4.0.26A 

PrgEnv-cray/3.1.49A              PrgEnv-intel/3.1.37C             PrgEnv-

pathscale/4.0.36(default) 

PrgEnv-cray/3.1.61               PrgEnv-intel/3.1.37E             PrgEnv-pgi/3.1.35 

PrgEnv-cray/4.0.12A              PrgEnv-intel/3.1.37G             PrgEnv-

pgi/3.1.37AA 

PrgEnv-cray/4.0.26A              PrgEnv-intel/3.1.49A             PrgEnv-pgi/3.1.37C 

PrgEnv-cray/4.0.36(default)      PrgEnv-intel/3.1.61              PrgEnv-

pgi/3.1.37E 

PrgEnv-gnu/3.1.35                PrgEnv-intel/4.0.12A             PrgEnv-pgi/3.1.37G 

PrgEnv-gnu/3.1.37AA              PrgEnv-intel/4.0.26A             PrgEnv-

pgi/3.1.49A 

PrgEnv-gnu/3.1.37C               PrgEnv-intel/4.0.36(default)     PrgEnv-

pgi/3.1.61 

PrgEnv-gnu/3.1.37E               PrgEnv-pathscale/3.1.35          PrgEnv-

pgi/4.0.12A 

PrgEnv-gnu/3.1.37G               PrgEnv-pathscale/3.1.37AA        PrgEnv-

pgi/4.0.26A 

PrgEnv-gnu/3.1.49A               PrgEnv-pathscale/3.1.37C         PrgEnv-

pgi/4.0.36(default) 

PrgEnv-gnu/3.1.61                PrgEnv-pathscale/3.1.37E 

 

------------------------------------------------- /opt/cray/modulefiles --------------------------------------

------- 

 

xt-libsci/10.5.02            xt-libsci/11.0.04            xt-libsci/11.0.05.1 

xt-libsci/11.0.03            xt-libsci/11.0.04.8          xt-libsci/11.0.05.2(default) 



Check you got the right library! 

● Add options to the linker to make sure you have the 
correct library loaded.  

● -Wl adds a command to the linker from the driver 

● You can ask for the linker to tell you where an object was 
resolved from using the –y option. 
● E.g. –Wl, -ydgemm_  

 

 

 

 

 

Note: do not explicitly link “-lsci”. This will not be found from libsci 
11+ and means a single core library for 10.x. 

.//main.o: reference to dgemm_ 
/opt/xt-libsci/11.0.05.2/cray/73/mc12/lib/libsci_cray_mp.a(dgemm.o): 
definition  of dgemm_ 



Threading 

● LibSci is compatible with OpenMP 
● Control the number of threads to be used in your program using 

OMP_NUM_THREADS 

● e.g., in job script export OMP_NUM_THREADS=16 
● Then run with aprun –n1 –d16    

● What behavior you get from the library depends on your 
code 
1. No threading in code 

● The BLAS call will use OMP_NUM_THREADS threads 

2. Threaded code, outside parallel regions 
● The BLAS call will use OMP_NUM_THREADS threads 

3. Threaded code, inside parallel regions 
● The BLAS call will use a single thread 



Threaded LAPACK 

● Threaded LAPACK works exactly the same as threaded 

BLAS 

● Anywhere LAPACK uses BLAS, those BLAS can be 

threaded 

● Some LAPACK routines are threaded at the higher level 

● No special instructions 

 

 



Performance Focus and Autotuning 

● Some components of the library are performance critical  

● For example BLAS and specifically GEMM 

● It is a significant challenge to get best performance across 

a range of architectures and problem sizes and  

thread counts 

 

 

● Cray has an autotuning framework to address this: 

● It uses a general GEMM framework 

● Offline tuning runs are done for a wide range of problem sizes 

● CPU and GPU targets 

● Knowledge gained from offline runs incorporated into the runtime 

library. 
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Tuning requests 

● CrayBLAS is an auto-tuned library 
● Generally, excellent performance is possible for all shapes and sizes 

● However, the adaptive CrayBLAS can be improved by 

tuning for exact sizes and shapes 

● Send your specific tuning requirements to 
crayblas@cray.com 
● Send the routine name and the list of calling sequences 

 

  

mailto:crayblas@cray.com


ScaLAPACK and IRT 

● ScaLAPACK in LibSci is optimized for Gemini/Aries 
interconnect 
● New collective communication procedures are added 

● Default topologies are changed to use the new optimizations 

● Much better strong scaling 

● It also benefits from the optimizations in CrayBLAS 

● Iterative Refinement Toolkit (IRT) can provide further 
improvements  
● Uses mixed precision  

● For some targets (CPU vector instructions and GPUs) single-precision 
can be much faster 

● Used for serial and parallel LU, Cholesky and QR 

● Either set IRT_USE_SOLVERS to 1 
or use the advanced API. 

 

 

 



● Serial version really just a productivity enhancer 

● Supports plan/execute with wisdom or do both at once 

● Load the module 

● Fortran: use crafft 

● Serial: 
● Various simple-to-use interfaces with optional arguments 

● Parallel: 
● Provides efficient network transposes but uses FFTW3 serial 

transforms 

● Various network optimizations including computation and 
communication overlap 

● Various 2d/3d real and complex transforms implemented 

Cray Adaptive FFT (CRAFFT) 



Summary 

● Do not re-invent the wheel but use scientific libraries 
wherever you can! 

● All the most widely used library families and frameworks 
readily available as XE/XC optimized versions 
● And if the cornerstone library of your application is still missing, let us 

know about it! 

● Make sure you use the optimized version provided by the 
system instead of a reference implementation 

 

● ... and give us feedback 

 


