
Cray Scientific Libraries

Overview

What are libraries for?

● Building blocks for writing scientific applications

● Historically – allowed the first forms of code re-use

● Later – became ways of running optimized code

● Today the complexity of the hardware is very high

● The Cray PE insulates users from this complexity
• Cray module environment

• CCE

• Performance tools

• Tuned MPI libraries (+PGAS)

• Optimized Scientific libraries

Cray Scientific Libraries are designed to provide the
maximum possible performance from Cray systems with
minimum effort.

FFT

FFTW

CRAFFT

Sparse

Trilinos

PETSc

CASK

Dense
BLAS

LAPACK

ScaLAPACK

IRT

Scientific libraries on XC – functional view

What makes Cray libraries special

1. Node performance
● Highly tuned routines at the low-level (ex. BLAS)

2. Network performance
● Optimized for network performance

● Overlap between communication and computation

● Use the best available low-level mechanism

● Use adaptive parallel algorithms

3. Highly adaptive software
● Use auto-tuning and adaptation to give the user the known best (or

very good) codes at runtime

4. Productivity features
● Simple interfaces into complex software

LibSci usage

● LibSci
● The drivers should do it all for you – no need to explicitly link

● For threads, set OMP_NUM_THREADS
● Threading is used within LibSci

● If you call within a parallel region, single thread used

● FFTW
● module load fftw (there are also wisdom files available)

● PETSc
● module load petsc (or module load petsc-complex)

● Use as you would your normal PETSc build

● Trilinos
● module load trilinos

● Cray Adaptive Sparse Kernels (CASK)
● You get optimizations for free

● module command
(module --help)

● PrgEnv modules:

● Component modules

● csmlversion (tool)

● Cray driver scripts ftn, cc, CC

Your friends
TUNER/STUNER> module avail PrgEnv

PrgEnv-cray/3.1.35 PrgEnv-gnu/4.0.12A PrgEnv-

pathscale/3.1.37G

PrgEnv-cray/3.1.37AA PrgEnv-gnu/4.0.26A PrgEnv-

pathscale/3.1.49A

PrgEnv-cray/3.1.37C PrgEnv-gnu/4.0.36(default) PrgEnv-

pathscale/3.1.61

PrgEnv-cray/3.1.37E PrgEnv-intel/3.1.35 PrgEnv-

pathscale/4.0.12A

PrgEnv-cray/3.1.37G PrgEnv-intel/3.1.37AA PrgEnv-

pathscale/4.0.26A

PrgEnv-cray/3.1.49A PrgEnv-intel/3.1.37C PrgEnv-

pathscale/4.0.36(default)

PrgEnv-cray/3.1.61 PrgEnv-intel/3.1.37E PrgEnv-pgi/3.1.35

PrgEnv-cray/4.0.12A PrgEnv-intel/3.1.37G PrgEnv-

pgi/3.1.37AA

PrgEnv-cray/4.0.26A PrgEnv-intel/3.1.49A PrgEnv-pgi/3.1.37C

PrgEnv-cray/4.0.36(default) PrgEnv-intel/3.1.61 PrgEnv-

pgi/3.1.37E

PrgEnv-gnu/3.1.35 PrgEnv-intel/4.0.12A PrgEnv-pgi/3.1.37G

PrgEnv-gnu/3.1.37AA PrgEnv-intel/4.0.26A PrgEnv-

pgi/3.1.49A

PrgEnv-gnu/3.1.37C PrgEnv-intel/4.0.36(default) PrgEnv-

pgi/3.1.61

PrgEnv-gnu/3.1.37E PrgEnv-pathscale/3.1.35 PrgEnv-

pgi/4.0.12A

PrgEnv-gnu/3.1.37G PrgEnv-pathscale/3.1.37AA PrgEnv-

pgi/4.0.26A

PrgEnv-gnu/3.1.49A PrgEnv-pathscale/3.1.37C PrgEnv-

pgi/4.0.36(default)

PrgEnv-gnu/3.1.61 PrgEnv-pathscale/3.1.37E

--- /opt/cray/modulefiles --------------------------------------

xt-libsci/10.5.02 xt-libsci/11.0.04 xt-libsci/11.0.05.1

xt-libsci/11.0.03 xt-libsci/11.0.04.8 xt-libsci/11.0.05.2(default)

Check you got the right library!

● Add options to the linker to make sure you have the
correct library loaded.

● -Wl adds a command to the linker from the driver

● You can ask for the linker to tell you where an object was
resolved from using the –y option.
● E.g. –Wl, -ydgemm_

Note: do not explicitly link “-lsci”. This will not be found from libsci
11+ and means a single core library for 10.x.

.//main.o: reference to dgemm_
/opt/xt-libsci/11.0.05.2/cray/73/mc12/lib/libsci_cray_mp.a(dgemm.o):
definition of dgemm_

Threading

● LibSci is compatible with OpenMP
● Control the number of threads to be used in your program using

OMP_NUM_THREADS

● e.g., in job script export OMP_NUM_THREADS=16
● Then run with aprun –n1 –d16

● What behavior you get from the library depends on your
code
1. No threading in code

● The BLAS call will use OMP_NUM_THREADS threads

2. Threaded code, outside parallel regions
● The BLAS call will use OMP_NUM_THREADS threads

3. Threaded code, inside parallel regions
● The BLAS call will use a single thread

Threaded LAPACK

● Threaded LAPACK works exactly the same as threaded

BLAS

● Anywhere LAPACK uses BLAS, those BLAS can be

threaded

● Some LAPACK routines are threaded at the higher level

● No special instructions

Performance Focus and Autotuning

● Some components of the library are performance critical

● For example BLAS and specifically GEMM

● It is a significant challenge to get best performance across

a range of architectures and problem sizes and

thread counts

● Cray has an autotuning framework to address this:

● It uses a general GEMM framework

● Offline tuning runs are done for a wide range of problem sizes

● CPU and GPU targets

● Knowledge gained from offline runs incorporated into the runtime

library.

A
B

C

0

5

10

15

20

25

G
F

lo
p

s

M=N=K

SANDYBRIDGE DGEMM - MEDIUM SQUARE
LIBSCI vs MKL (single thread)

LIBSCI_1th

MKL_1th

150

170

190

210

230

250

270

290

310

330

G
F

lo
p

s

Matrix size M=N=K

SANDYBRIDGE DGEMM - LARGE SQUARE
LIBSCI vs MKL

LIBSCI_16th

MKL_16th

Tuning requests

● CrayBLAS is an auto-tuned library
● Generally, excellent performance is possible for all shapes and sizes

● However, the adaptive CrayBLAS can be improved by

tuning for exact sizes and shapes

● Send your specific tuning requirements to
crayblas@cray.com
● Send the routine name and the list of calling sequences

mailto:crayblas@cray.com

ScaLAPACK and IRT

● ScaLAPACK in LibSci is optimized for Gemini/Aries
interconnect
● New collective communication procedures are added

● Default topologies are changed to use the new optimizations

● Much better strong scaling

● It also benefits from the optimizations in CrayBLAS

● Iterative Refinement Toolkit (IRT) can provide further
improvements
● Uses mixed precision

● For some targets (CPU vector instructions and GPUs) single-precision
can be much faster

● Used for serial and parallel LU, Cholesky and QR

● Either set IRT_USE_SOLVERS to 1
or use the advanced API.

● Serial version really just a productivity enhancer

● Supports plan/execute with wisdom or do both at once

● Load the module

● Fortran: use crafft

● Serial:
● Various simple-to-use interfaces with optional arguments

● Parallel:
● Provides efficient network transposes but uses FFTW3 serial

transforms

● Various network optimizations including computation and
communication overlap

● Various 2d/3d real and complex transforms implemented

Cray Adaptive FFT (CRAFFT)

Summary

● Do not re-invent the wheel but use scientific libraries
wherever you can!

● All the most widely used library families and frameworks
readily available as XE/XC optimized versions
● And if the cornerstone library of your application is still missing, let us

know about it!

● Make sure you use the optimized version provided by the
system instead of a reference implementation

● ... and give us feedback

